This class defines a tuning space for hyperparameter tuning.
For tuning, it is important to create a search space that defines the range over which hyperparameters should be tuned.
TuningSpace
object consists of search spaces from peer-reviewed articles which work well for a wide range of data sets.
The $values
field stores a list of paradox::TuneToken which define the search space.
These tokens can be assigned to the $values
slot of a learner's paradox::ParamSet.
When the learner is tuned, the tokens are used to create the search space.
S3 Methods
as.data.table.TuningSpace(x)
Returns a tabular view of the tuning space.
TuningSpace ->data.table::data.table()
x
(TuningSpace)
Public fields
id
(
character(1)
)
Identifier of the object.values
(
list()
)
List of paradox::TuneToken that describe the tuning space and fixed parameter values.tags
(
character()
)
Arbitrary tags to group and filter tuning space e.g."classification"
or "regression
".learner
(
character(1)
)
mlr3::Learner of the tuning space.package
(
character(1)
)
Packages which provide the mlr3::Learner, e.g. mlr3learners for the learner mlr3learners::LearnerClassifRanger which interfaces the ranger package.label
(
character(1)
)
Label for this object. Can be used in tables, plot and text output instead of the ID.man
(
character(1)
)
String in the format[pkg]::[topic]
pointing to a manual page for this object. The referenced help package can be opened via method$help()
.
Methods
Method new()
Creates a new instance of this R6 class.
Usage
TuningSpace$new(
id,
values,
tags,
learner,
package = character(),
label = NA_character_,
man = NA_character_
)
Arguments
id
(
character(1)
)
Identifier for the new instance.values
(
list()
)
List of paradox::TuneToken that describe the tuning space and fixed parameter values.tags
(
character()
)
Tags to group and filter tuning spaces e.g."classification"
or "regression
".learner
(
character(1)
)
mlr3::Learner of the tuning space.package
(
character()
)
Packages which provide the mlr3::Learner, e.g. mlr3learners for the learner mlr3learners::LearnerClassifRanger which interfaces the ranger package.label
(
character(1)
)
Label for the new instance. Can be used in tables, plot and text output instead of the ID.man
(
character(1)
)
String in the format[pkg]::[topic]
pointing to a manual page for for the new instance. The referenced help package can be opened via method$help()
.
Method get_learner()
Returns a learner with paradox::TuneToken set in parameter set.
Arguments
...
(named ‘list()’)
Passed tomlr3::lrn()
. Named arguments passed to the constructor, to be set as parameters in the paradox::ParamSet, or to be set as public field. Seemlr3misc::dictionary_sugar_get()
for more details.
Examples
library(mlr3tuning)
# Get default tuning space of rpart learner
tuning_space = lts("classif.rpart.default")
# Set tuning space
learner = lrn("classif.rpart")
learner$param_set$values = tuning_space$values
# Tune learner
instance = tune(
tnr("random_search"),
task = tsk("pima"),
learner = learner,
resampling = rsmp ("holdout"),
measure = msr("classif.ce"),
term_evals = 10)
instance$result
#> cp minbucket minsplit learner_param_vals x_domain classif.ce
#> <num> <num> <num> <list> <list> <num>
#> 1: -3.619915 3.851142 3.505744 <list[3]> <list[3]> 0.2148438
library(mlr3pipelines)
# Set tuning space in a pipeline
graph_learner = as_learner(po("subsample") %>>%
lts(lrn("classif.rpart")))