Tuning spaces from the Kuehn (2018) article.
Source
Kuehn D, Probst P, Thomas J, Bischl B (2018). “Automatic Exploration of Machine Learning Experiments on OpenML.” 1806.10961, https://arxiv.org/abs/1806.10961.
ranger tuning space
num.trees \([1, 2000]\)
replace [TRUE,FALSE]
sample.fraction \([0.1, 1]\)
mtry.ratio \([0, 1]\)
respect.unordered.factors [“ignore”, “order”]
min.node.size \([1, 100]\)
The tuning space of the ranger learner is slightly different from the original paper.
The hyperparameter mtry.power
is replaced by mtry.ratio
and min.node.size
is explored in a range from 1 to 100.
svm tuning space
kernel [“linear”, “polynomial”, “radial”]
cost \([1e-04, 1000]\) Logscale
gamma \([1e-04, 1000]\) Logscale
degree \([2, 5]\)
xgboost tuning space
nrounds \([1, 5000]\)
eta \([1e-04, 1]\) Logscale
subsample \([0, 1]\)
booster [“gblinear”, “gbtree”, “dart”]
max_depth \([1, 15]\)
min_child_weight \([1, 100]\) Logscale
colsample_bytree \([0, 1]\)
colsample_bylevel \([0, 1]\)
lambda \([1e-04, 1000]\) Logscale
alpha \([1e-04, 1000]\) Logscale