Skip to contents

Tuning spaces from the Kuehn (2018) article. The hyperparameter respect.unordered.factors and min.node.size of the ranger tuning space differ from the paper.

Source

Kuehn D, Probst P, Thomas J, Bischl B (2018). “Automatic Exploration of Machine Learning Experiments on OpenML.” 1806.10961, https://arxiv.org/abs/1806.10961.

glmnet tuning space

  • alpha \([0, 1]\)

  • s \([1e-04, 1000]\) Logscale

kknn tuning space

  • k \([1, 30]\)

ranger tuning space

  • num.trees \([1, 2000]\)

  • replace [TRUE,FALSE]

  • sample.fraction \([0.1, 1]\)

  • mtry.ratio \([0, 1]\)

  • respect.unordered.factors [“ignore”, “order”, “partition”]

  • min.node.size \([1, 100]\)

mtry.power is replaced by mtry.ratio.

rpart tuning space

  • cp \([0, 1]\)

  • maxdepth \([1, 30]\)

  • minbucket \([1, 60]\)

  • minsplit \([1, 60]\)

svm tuning space

  • kernel [“linear”, “polynomial”, “radial”]

  • cost \([1e-04, 1000]\) Logscale

  • gamma \([1e-04, 1000]\) Logscale

  • degree \([2, 5]\)

xgboost tuning space

  • nrounds \([1, 5000]\)

  • eta \([1e-04, 1]\) Logscale

  • subsample \([0, 1]\)

  • booster [“gblinear”, “gbtree”, “dart”]

  • max_depth \([1, 15]\)

  • min_child_weight \([1, 100]\) Logscale

  • colsample_bytree \([0, 1]\)

  • colsample_bylevel \([0, 1]\)

  • lambda \([1e-04, 1000]\) Logscale

  • alpha \([1e-04, 1000]\) Logscale