Function to retrieve TuningSpace objects from mlr_tuning_spaces and further, allows a mlr3::Learner to be directly configured with a search space. This function belongs to mlr3::mlr_sugar family.
Usage
lts(x, ...)
# S3 method for missing
lts(x, ...)
# S3 method for character
lts(x, ...)
# S3 method for Learner
lts(x, ...)
ltss(x)
Arguments
- x
(
character()
| mlr3::Learner)
Ifcharacter
, key passed the dictionary to retrieve the tuning space. If mlr3::Learner, default tuning space is added to the learner.- ...
(named list of paradox::TuneToken |
NULL
)
Pass paradox::TuneToken to add or overwrite parameters in the tuning space. UseNULL
to remove parameters (see examples).
Value
TuningSpace if x
is character()
.
mlr3::Learner if x
is mlr3::Learner.
Or a list of objects for the ltss()
function.
missing, mlr_tuning_spaces dictionary
a character
, TuningSpace
a mlr3::Learner, mlr3::Learner with paradox::TuneToken
a list()
, list of TuningSpace or mlr3::Learner
Examples
# load tuning space
lts("classif.rpart.default")
#> <TuningSpace:classif.rpart.default>: Classification Rpart with Default
#> id lower upper levels logscale
#> <char> <num> <num> <list> <lgcl>
#> 1: minsplit 2e+00 128.0 TRUE
#> 2: minbucket 1e+00 64.0 TRUE
#> 3: cp 1e-04 0.1 TRUE
# load tuning space and add parameter
lts("classif.rpart.default", maxdepth = to_tune(1, 15))
#> <TuningSpace:classif.rpart.default>: Classification Rpart with Default
#> id lower upper levels logscale
#> <char> <num> <num> <list> <lgcl>
#> 1: minsplit 2e+00 128.0 TRUE
#> 2: minbucket 1e+00 64.0 TRUE
#> 3: cp 1e-04 0.1 TRUE
#> 4: maxdepth 1e+00 15.0 FALSE
# load tuning space and remove parameter
lts("classif.rpart.default", minsplit = NULL)
#> <TuningSpace:classif.rpart.default>: Classification Rpart with Default
#> id lower upper levels logscale
#> <char> <num> <num> <list> <lgcl>
#> 1: minbucket 1e+00 64.0 TRUE
#> 2: cp 1e-04 0.1 TRUE
# load tuning space and overwrite parameter
lts("classif.rpart.default", minsplit = to_tune(32, 128))
#> <TuningSpace:classif.rpart.default>: Classification Rpart with Default
#> id lower upper levels logscale
#> <char> <num> <num> <list> <lgcl>
#> 1: minsplit 32.0000 128.0 FALSE
#> 2: minbucket 1.0000 64.0 TRUE
#> 3: cp 0.0001 0.1 TRUE
# load learner and apply tuning space in one go
lts(lrn("classif.rpart"))
#> <LearnerClassifRpart:classif.rpart>: Classification Tree
#> * Model: -
#> * Parameters: cp=<RangeTuneToken>, minbucket=<RangeTuneToken>,
#> minsplit=<RangeTuneToken>, xval=0
#> * Packages: mlr3, rpart
#> * Predict Types: [response], prob
#> * Feature Types: logical, integer, numeric, factor, ordered
#> * Properties: importance, missings, multiclass, selected_features,
#> twoclass, weights
# load learner, overwrite parameter and apply tuning space
lts(lrn("classif.rpart"), minsplit = to_tune(32, 128))
#> <LearnerClassifRpart:classif.rpart>: Classification Tree
#> * Model: -
#> * Parameters: cp=<RangeTuneToken>, minbucket=<RangeTuneToken>,
#> minsplit=<RangeTuneToken>, xval=0
#> * Packages: mlr3, rpart
#> * Predict Types: [response], prob
#> * Feature Types: logical, integer, numeric, factor, ordered
#> * Properties: importance, missings, multiclass, selected_features,
#> twoclass, weights
# load multiple tuning spaces
ltss(c("classif.rpart.default", "classif.ranger.default"))
#> [[1]]
#> <TuningSpace:classif.rpart.default>: Classification Rpart with Default
#> id lower upper levels logscale
#> <char> <num> <num> <list> <lgcl>
#> 1: minsplit 2e+00 128.0 TRUE
#> 2: minbucket 1e+00 64.0 TRUE
#> 3: cp 1e-04 0.1 TRUE
#>
#> [[2]]
#> <TuningSpace:classif.ranger.default>: Classification Ranger with Default
#> id lower upper levels logscale
#> <char> <num> <num> <list> <lgcl>
#> 1: mtry.ratio 0.0 1 FALSE
#> 2: replace NA NA FALSE
#> 3: sample.fraction 0.1 1 FALSE
#> 4: num.trees 1.0 2000 FALSE
#>